United States Department of Agriculture Natural Resources Conservation Service ## **Ecological Site Description** Site Type: Rangeland **Site Name:** Clayey (Cy) 5-9" Big Horn Basin Precipitation Zone Site ID: R032XY104WY **Major Land Resource Area:** 32 – Northern Intermountain Desertic Basins ## **Physiographic Features** This site occurs on nearly level to 30% slopes. Landform: Hillsides, alluvial fans & stream terraces Aspect: N/A Elevation (feet): 3700 6000 Slope (percent): 0 30 Water Table Depth (inches): None within 60 inches Flooding: Frequency: None rare **Duration:** None extremely brief **Ponding:** Depth (inches): 0 0 Frequency: None occasional Duration: None brief Runoff Class: very low very high #### **Climatic Features** Annual precipitation ranges from 5-9 inches per year. The normal precipitation pattern shows peaks in May and June and a secondary peak in September. This amounts to about 50% of the mean annual precipitation. Much of the moisture that falls in the latter part of the summer is lost by evaporation and much of the moisture that falls during the winter is lost by sublimation. Average snowfall is about 20 inches annually. Wide fluctuations may occur in yearly precipitation and result in more dry years than those with more than normal precipitation. Temperatures show a wide range between summer and winter and between daily maximums and minimums, due to the high elevation and dry air, which permits rapid incoming and outgoing radiation. Cold air outbreaks from Canada in winter move rapidly from northwest to southeast and account for extreme minimum temperatures. Chinook winds may occur in winter and bring rapid rises in temperature. Extreme storms may occur during the winter, but most severely affect ranch operations during late winter and spring. High winds are generally blocked from the basin by high mountains, but can occur in conjunction with an occasional thunderstorm. Growth of native cool-season plants begins about April 1 and continues to about July 1. Cool weather and moisture in September may produce some green up of cool season plants that will continue to late October. The following information is from the "Emblem" climate station: | | <u>Minimum</u> | <u>Maximum</u> | 5 yrs. out of 10 between | |-------------------------------------|----------------|----------------|--------------------------| | Frost-free period (days): | 98 | 171 | May 13 – September 19 | | Freeze-free period (days): | 120 | 184 | May 1 – October 5 | | Mean Annual Precipitation (inches): | 3.22 | 10.97 | | Mean annual precipitation: 7.42 inches Mean annual air temperature: 45.01°F (31.2°F Avg. Min. to 58.7°F Avg. Max.) For detailed information visit the Natural Resources Conservation Service National Water and Climate Center at http://www.wcc.nrcs.usda.gov/ website. Other climate station(s) representative of this precipitation zone include" Basin", "Deaver", "Lovell", and "Worland". ## **Influencing Water Features** | Wetland Description: | <u>System</u> | <u>Subsystem</u> | <u>Class</u> | Sub-class | |----------------------|---------------|------------------|--------------|-----------| | None | None | None | None | None | Stream Type: None ## Soils The soils of this site are moderately deep (greater than 20" to bedrock) to very deep, moderately well to well-drained soils that formed in alluvium or alluvium over residuum. These soils have slow to moderate permeability. The surface soil will vary from 2 to 5 inches deep. These soils may develop severe cracks. The soil characteristics having the most influence on plants are the heavy texture, available moisture, and potential for elevated quantities of soluble salts. Major Soil Series correlate to this site include: Youngston Other Soil Series correlated to this site in MLRA 32 include: ## **Representative Soil Features** Parent Material Kind: alluvium and residuum Parent Material Origin: shale, calcareous Surface Texture: clay loam, clay, silty clay loam, silty clay, fine sandy clay loam sandy clay Surface Texture Modifier: none Subsurface Texture Group: clay, Surface Fragments ≤ 3" (% Cover): 0 Surface Fragments > 3" (% Cover): 0 Subsurface Fragments ≤ 3" (% Volume): 0 Subsurface Fragments > 3" (% Volume): 0 | · · | <u>Minimum</u> | <u>Maximum</u> | |---------------------|-------------------------|----------------| | Drainage Class: | moderately well drained | well drained | | Permeability Class: | slow | moderate | | Depth (inches): | 20 | >60 | | Site Type: Rangeland
MLRA: 32 – Northern Intermountain Desertic Basin | | Clayey (Cy) 5-9 BH
R032XY104WY | |--|-----|-----------------------------------| | Electrical Conductivity (mmhos/cm) ≤20": | 0 | 4 | | Sodium Absorption Ratio ≤20": | 0 | 12 | | Soil Reaction (1:1 Water) <20": | 7.4 | 9.0 | | Soil Reaction (0.1M CaCl2) <20" | NA | NA | | Available Water Capacity (inches) <30": | 3.0 | 6.0 | | Calcium Carbonate Equivalent (percent) ≤20": | 0 | 5 | #### **Plant Communities** #### **Ecological Dynamics of the Site:** Potential vegetation on this site is dominated by mid cool-season perennial grasses. Other significant vegetation includes big sagebrush, winterfat, birdfoot sagebrush, and a variety of forbs. The expected potential composition for this site is about 70% grasses, 10% forbs and 20% woody plants. The composition and production will vary naturally due to historical use, fluctuating precipitation and fire frequency. As this site deteriorates species such as blue grama, plains pricklypear, birdfoot sagebrush, and big sagebrush will increase. Weedy annuals will invade. Cool-season grasses such as bluebunch wheatgrass, western wheatgrass, bottlebrush squirreltail, and Indian ricegrass will decrease in frequency and overall production. Big sagebrush may become dominant on some areas with an absence of fire. Wildfires are actively controlled in recent times so chemical control using herbicides has replaced the historic role of fire on this site. Recently, prescribed burning has regained some popularity. Due to the amount and pattern of the precipitation, the big sagebrush component typically is not resilient once it has been removed if a healthy and vigorous stand of grass exists and is maintained. The exception to this is where the herbaceous component is severely degraded at the time of treatment, growing conditions are unfavorable after treatment, and/or recovery periods are inadequate due to poor grazing management. The Historic Climax Plant Community (description follows the plant community diagram) has been determined by study of rangeland relic areas, or areas protected from excessive disturbance. Trends in plant communities going from heavily grazed areas to lightly grazed areas, seasonal use pastures, and historical accounts have also been used. The following is a State and Transition Model Diagram that illustrates the common plant communities (states) that can occur on the site and the transitions between these communities. The ecological processes will be discussed in more detail in the plant community narratives following the diagram. MLRA: 32 - Northern Intermountain Desertic Basins BM - Brush Management (fire, chemical, mechanical) **Freq. & Severe Grazing** - Frequent and Severe Utilization of the Cool-season Midgrasses during the Growing Season **GLMT** - Grazing Land Mechanical Treatment LTPG - Long-term Prescribed Grazing MCSLG - Moderate, Continuous Season-long Grazing NU, NF - No Use and No Fire **PG** - Prescribed Grazing (proper stocking rates with adequate recovery periods during the growing season) **VLTPG** - Very Long-term Prescribed Grazing (could possibly take generations) WF - Wildfire (Natural or Human Caused) ## Plant Community Composition and Group Annual Production Reference Plant Community (HCPC) | COMMON NAME/GROUP NAME | SCIENTIFIC NAME | SYMBOL | Annua | Production (
Total: 37 | Normal Year)
75 | |-------------------------------------|-----------------------------|--------|-------|---------------------------|--------------------| | | | | Group | lbs./acre | % Comp. | | GRASSES AND GRASS-LIKES | | | | | | | GRASSES/GRASSLIKES | | | | | | | Bluebunch wheatgrass | Pseudoroegneria spicata | PSSP6 | 1 | 19 - 56 | 5 - 15 | | Western wheatgrass | Pascopyrum smithii | PASM | 2 | 56 - 113 | 15 - 30 | | Bottlebrush squirreltail | Elymus elymoides | ELELE | 3 | 56 - 113 | 15 - 30 | | Indian ricegrass | Achnatherum hymenoides | ACHY | 4 | 19 - 56 | 5 - 15 | | MISC. GRASSES/GRASSLIKES | | | 5 | 0 - 56 | 0 - 15 | | Blue grama | Bouteloua gracilis | BOGR2 | 5 | 0 - 19 | 0 - 5 | | Prairie junegrass | Koeleria macrantha | KOMA | 5 | 0 - 19 | 0 - 5 | | Sandberg bluegrass | Poa secunda | POSE | 5 | 0 - 19 | 0 - 5 | | Upland sedges | Carex spp. | CAREX | 5 | 0 - 19 | 0 - 5 | | other perennial grasses (native) | | 2GP | 5 | 0 - 19 | 0 - 5 | | FORBS | | | 6 | 19 - 56 | 5 - 15 | | False carrot | Turgenia spp. | TURGE | 6 | 0 - 19 | 0 - 5 | | Phlox | Phlox spp. | PHLOX | 6 | 0 - 19 | 0 - 5 | | Scarlet globemallow | Sphaeralcea coccinea | SPCO | 6 | 0 - 19 | 0 - 5 | | Wild onion | Allium textile | ALTE | 6 | 0 - 19 | 0 - 5 | | other perennial forbs (native) | | 2FP | 6 | 0 - 19 | 0 - 5 | | TREES/SHRUBS | | | | | | | Big sagebrush | Artemisia tridentata | ARTR2 | 7 | 0 - 38 | 0 - 10 | | Birdfoot sagebrush | Artemisia pedatifida | ARPE6 | 8 | 0 - 19 | 0 - 5 | | Green rabbitbrush | Chrysothamnus viscidiflorus | CHVI8 | 9 | 0 - 19 | 0 - 5 | | Winterfat | Krascheninnikovia lanata | KRAL2 | 10 | 0 - 19 | 0 - 5 | | other shrubs & half shrubs (native) | | 2SHRUB | 11 | 0 - 19 | 0 - 5 | This list of plants and their relative proportions are based on near normal years. Fluctuations in species composition and relative production may change from year to year dependent upon precipitation or other climatic factors. Clayey (Cy) 5-9 BH R032XY104WY Site Type: Rangeland MLRA: 32 – Northern Intermountain Desertic Basin ## **Plant Community Narratives** Following are the narratives for each of the described plant communities. These plant communities may not represent every possibility, but they probably are the most prevalent and repeatable plant communities. The plant composition tables shown above have been developed from the best available knowledge at the time of this revision. As more data is collected, some of these plant communities may be revised or removed, and new ones may be added. None of these plant communities should necessarily be thought of as "Desired Plant Communities". According to the USDA NRCS National Range and Pasture Handbook, Desired Plant Communities (DPC's) will be determined by the decision-makers and will meet minimum quality criteria established by the NRCS. The main purpose for including any description of a plant community here is to capture the current knowledge and experience at the time of this revision. #### Rhizomatous Wheatgrasses/Bottlebrush Squirreltail Community The interpretive plant community for this site is the Historic Climax Plant Community. This state evolved with grazing by large herbivores and periodic fires. The cyclical nature of the fire regime in this community prevented big sagebrush from being the dominant landscape. This plant community can be found on areas that are properly managed with grazing and/or prescribed burning, and on areas receiving occasional short periods of rest. Potential vegetation is about 70% grasses or grass-like plants, 10% forbs, and 20% woody plants. Cool season mid-grasses dominate the state. The major grasses include bluebunch wheatgrass, rhizomatous wheatgrasses, bottlebrush squirreltail, and Indian ricegrass. Other grasses occurring in this state include Sandberg bluegrass and blue grama. Woody species are a conspicuous element of this state, and occurs in mosaic patterns across the site. Big sagebrush can make up to 10% of the annual production and winterfat can make up to 5%. Natural fire occurred frequently in this community and prevents big sagebrush from becoming a dominant species. A variety of forbs also occurs in this state and plant diversity is high (see Plant Composition Table). The total annual production (air-dry weight) of this state is about 375 pounds per acre, but it can range from about 225 lbs. /acre in unfavorable years to about 600 lbs. /acre in above average years. The following is the growth curve of this plant community expected during a normal year: Growth curve number: WY0501 Growth curve name: 5-9BH, UPLAND SITES Growth curve description: ALL UPLAND SITES | 1 | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | 0 | 0 | 0 | 15 | 50 | 20 | 5 | 0 | 10 | 0 | 0 | 0 | (monthly percentages of total annual growth) The state is stable and well adapted to the Northern Intermountain Desertic Basins climatic conditions. The diversity in plant species allow for high drought resistance. This is a sustainable plant community (site/soil stability, watershed function, and biologic integrity). Transitions or pathways leading to other plant communities are as follows: • <u>Drought, and moderate season long grazing with the absence of fire,</u> will convert this plant community to the *Perennial Grass/Mixed Shrub Plant Community*. #### **Perennial Grass/Mixed Shrub Plant Community** Historically, this plant community evolved under grazing by large ungulates and a low fire frequency. Currently, this site is normally found under a moderate, season-long grazing regime and in the absence of fire or brush control. Prolonged drought can also play an important role and will exacerbate these conditions. Big sagebrush and birdfoot sagebrush are important components of this plant community. Cool-season grasses make up the majority of the understory with the balance made up of short warm-season grasses, annual cool-season grass, and miscellaneous forbs. Dominant grasses include bluebunch wheatgrass, rhizomatous wheatgrasses, and bottlebrush squirreltail. Forbs commonly found in this plant community, include fringed sagewort, hairy goldenaster, phlox, wild onion, plains spring parsley, and scarlet globemallow. The annual production of shrubs has increased as compared to the HCPC and may become as much as 25% of the total of the percentage composition of the plant community. The overstory of sagebrush and understory of grass and forbs provide a diverse plant community. When compared to the Historic Climax Plant Community, big sagebrush and blue grama have increased. Plains pricklypear cactus will also have increased, but occurs only in small patches. Indian ricegrass has decreased and may occur in only trace amounts under the sagebrush canopy or within the patches of pricklypear. In addition, winterfat may or may not have changed depending on the season of use. The total annual production (air-dry weight) of this state is about 240 pounds per acre, but it can range from about 150 lbs./acre in unfavorable years to about 400 lbs./acre in above average years. The following is the growth curve expected during a normal year: Growth curve number: WY0501 Growth curve name: 5-9BH, UPLAND SITES Growth curve description: ALL UPLAND SITES | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 15 | 50 | 20 | 5 | 0 | 10 | 0 | 0 | 0 | (monthly percentages of total annual growth) This plant community is resistant to change. The herbaceous species present are well adapted to grazing; however, species composition can be altered through long-term overgrazing. The herbaceous component is mostly intact and plant vigor and replacement capabilities are sufficient. Water flow patterns and litter movement may be occurring but only on steeper slopes. Incidence of pedestalling is minimal. Soils are mostly stable and the surface shows minimum soil loss. The watershed is functioning and the biotic community is intact. Transitional pathways leading to other plant communities are as follows: Prescribed grazing or possible long-term prescribed grazing will return this state to near Historic Climax Plant Community. The probability of this occurring is high especially if rotational grazing along with short deferred grazing is implemented as part of prescribed method of use. In addition, the removal of fire suppression will allow a somewhat natural fire regime to reoccur to more easily transition between this plant community and the HCPC. A prescribed fire treatment can be useful to hasten this transition if desired. - Frequent and severe grazing with the absences of fire on less saline soils will convert this plant community to a *Mixed Shrub/Bare Ground Vegetation State*. - <u>Frequent and severe grazing plus no fire on more saline soils</u> will convert this state to Salt Tolerant Shrub/Bare Ground Vegetative State. #### Mixed Shrub/Bare Ground Plant Community This plant community evolved under frequent and severe grazing with the absence of fire. Big sagebrush is the dominant species of this plant community. Cool-season grasses have been mostly eliminated and if still present can only be found under the sagebrush canopy. The interspaces between plants have expanded leaving the amount of bare ground more prevalent and more soil surface exposed to erosive elements. The dominant grasses are Sandberg bluegrass, and blue grama. Weedy annual species such as cheatgrass have invaded if a seed source is available. Cactus and sageworts often increase. Noxious weeds such as Russian knapweed, leafy spurge, or Canada thistle may invade the site. Plant diversity is moderate to poor. When compared with the HCPC or the Mixed Shrub/ Perennial Grass Plant Communities, the annual production is similar, as the shrub production compensates for the decline in the herbaceous production. The total annual production (air-dry weight) of this state is about 250 pounds per acre, but it can range from about 175 lbs./acre in unfavorable years to about 325 lbs./acre in above average years. The following is the growth curve expected during a normal year: Growth curve number: WY0501 Growth curve name: 5-9BH, UPLAND SITES Growth curve description: ALL UPLAND SITES | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 15 | 50 | 20 | 5 | 0 | 10 | 0 | 0 | 0 | (monthly percentages of total annual growth) This plant community is resistant to change as the stand becomes more decadent. These areas may actually be more resistant to fire as less fine fuels are available and the bare ground between the sagebrush plants is increased. Continued frequent and severe grazing or the removal of grazing does not seem to affect the plant composition or structure of the plant community. Plant diversity is moderate to low. The plant vigor is diminished and replacement capabilities are limited due to the reduced number of cool-season grasses. Plant litter is noticeably less when compared to the HCPC. Soil erosion is accelerated because of increased bare ground. Water flow patterns and pedestalling are obvious. Infiltration is reduced and runoff is increased. Rill channels may be noticeable in the interspaces and gullies may be establishing where rills have concentrated down slope. Transitional pathways leading to other plant communities are as follows: • <u>Brush Management or wildfire followed by frequent and severe grazing, will convert this plant community to a Blue Grama Sod Plant Community.</u> Brush management, followed by prescribed grazing and seeding if necessary, will return this plant community at or near the HCPC. If prescribed fire is used as a means to reduce or remove the shrubs, sufficient fine fuels will need to be present. This may require deferment from grazing prior to treatment. Post management is critical to ensure success. This can range from two or more years of rest to partial growing season deferment, depending on the condition of the understory at the time of treatment and the growing conditions following treatment. In the case of an intense wildfire that occurs when desirable plants are not completely dormant, the length of time required to reach the HCPC may be increased and seeding of natives are recommended. #### **Blue Grama Sod Plant Community** This plant community is the result of frequent and severe yearlong grazing. Soils on these sites are usually less saline. It is dominated by a dense sod of blue grama and includes a mosaic shrub overstory. Big sagebrush may be present but usually birdfoot sagebrush is the most important shrub in this plant community. Pricklypear cactus can become dense in areas so that livestock cannot graze forage growing within the cactus clumps. When compared with the Historic Climax Plant Community warm season grasses have replaced most cool season midgrasses. Blue grama, upland sedges, and pricklypear have increased. All coolseason mid-grasses, forbs, and most shrubs have been greatly reduced. Production has been significantly decreased. The total annual production (air-dry weight) of this state is about 75 pounds per acre, but it can range from about 50 lbs./acre in unfavorable years to about 150 lbs./acre in above average years. The following is the growth curve expected during a normal year: Growth curve number: WY0501 Growth curve name: 5-9BH, UPLAND SITES Growth curve description: ALL UPLAND SITES | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 15 | 50 | 20 | 5 | 0 | 10 | 0 | 0 | 0 | (monthly percentages of total annual growth) This sod is extremely resistant to change and continued frequent and severe grazing or the removal of grazing does not seem to affect the plant composition or structure of the plant community. The biotic integrity of this state is not functional and plant diversity is extremely low. Plant vigor is significantly weakened and replacement capabilities are limited due to the reduced number of coolseason grasses. This state is stable and protected from excessive erosion. The sod formed by these grasses is resistant to water infiltration. While the soil is protected by this sod, excessive runoff may occur offsite. As a result, rills or other more severe erosion can occur on the adjoining sites. The watershed may or may not be functioning, as runoff may affect adjoining sites. The biotic integrity of this plant community is not intact. Transitional pathways leading to other plant communities are as follows: • <u>Grazing land mechanical treatment (chiseling and seeding, etc.) followed by prescribed grazing</u> will return this plant community to near *Historic Climax Plant Community*. #### Salt Tolerant Shrub/Bare Ground Plant Community This plant community can occur where states are subjected to continuous yearlong grazing and where soils are influenced by elevated amount of soluble salts. Salt tolerant shrubs are a significant component of the plant community and the preferred cool season grasses have been eliminated or greatly reduced. Wyoming big sagebrush is still a component of the plant community but does not dominate the overstory shrub species. This site is dominated by an overstory of shrubs, which can vary widely in composition and production. This variation results from the dissimilarity in quantity of soluble salts present in the soils and the availability of shrubs to occupy the site. The dominant shrubs are big sagebrush, rubber rabbitbrush, greasewood and a number of different saltbushes. Perennial cool season mid-grasses have been removed leaving mostly patches of blue grama and annuals. Cheatgrass and weedy annual forbs such as halogeton, Russian thistle, and kochia, will occupy the site if a seed source is available. Noxious weeds such as Russian knapweed may also invade this site. When compared to the HCPC, grass production has diminished but is compensated by the increase in shrub production. The plant species, however, are completely distinct. The interspaces between plants have expanded leaving the amount of bare ground more prevalent. Surface salts have increased, especially on sites dominated by greasewood and saltbushes. The leaves of these plants contain high amounts of sodium and other salts, and when shed these soluble salts are transferred to the soils underneath the plants. Consequently, the soil can exhibit wide variations in soluble salts, which causes the variation in shrub composition. The total annual production (air-dry weight) of this state is about 200 pounds per acre, but it can range from about 75 lbs./acre in unfavorable years to about 275 lbs./acre in above average years. The following is the growth curve of this plant community expected during a normal year: Growth curve number: WY0501 Growth curve name: 5-9BH, UPLAND SITES Growth curve description: ALL UPLAND SITES | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 15 | 50 | 20 | 5 | 0 | 10 | 0 | 0 | 0 | (Monthly percentages of total annual growth) This plant community is resistant to change. These areas are actually more resistant to fire as less fine fuels are available and the bare ground between the shrubs has increased. Continued frequent and severe grazing or the removal of grazing does not seem to affect the composition or structure of the plant community. Plant diversity is moderate to poor. The biotic integrity of this state is mostly dysfunctional because of the predominant salt tolerant shrub overstory and absence of perennial coolseason grasses. Soil erosion is accelerated because of increased bare ground. Water flow patterns and pedestalling are obvious. Infiltration is reduced and runoff is increased. Rill channels may be noticeable in the interspaces and gullies may be establishing where rills have concentrated down slope. Transitions or pathways leading to other plant communities are as follows: <u>Prescribed grazing or possibly long-term prescribed grazing</u>, will convert this plant community to the Salt Tolerant Shrub/Rhizomatous Wheatgrass Vegetative State. Recovery to near Historic Climax Plant Community condition is difficult to impossible due to the resistance of these shrubs to herbicides and other brush management techniques. In addition, the increase in surface salts has had accumulated effects on the soil so most of the herbaceous plants associated with the HCPC are no longer suitable for this site. The most notable exception is the rhizomatous wheatgrasses and bottlebrush squirreltail. Soil remediation to reduce the surface salts is not recommended, as this is mostly ineffective and extremely costly. Seeding more salt-tolerant native grasses and forbs will improve the productivity of site and plant cover. #### Salt Tolerant Shrub/Rhizomatous Wheatgrasses Plant Community This plant community can occur where the Salt Tolerant/Bare Ground Plant Community prescribed grazing management is implemented. Salt tolerant shrubs and Wyoming big sagebrush still remain a significant component of the plant community but preferred cool season grasses have reestablished. This site is dominated by an overstory of a variety of shrubs, such as Wyoming big sagebrush, rubber rabbitbrush, greasewood, and a variety of saltbushes. Some perennial cool season mid-grasses have once again reestablished such as rhizomatous wheatgrasses and bottlebrush squirreltail. Other grasses include Sandberg bluegrass and blue grama. Patches of annuals such as cheatgrass and other weedy annual forbs such as halogeton, Russian thistle, and kochia, will persist on this site. Noxious weeds such as Russian knapweed may also remain if not treated. The interspaces between plants will have diminished in size. When compared with the HCPC or the Mixed Shrub/ Perennial Grass Plant Communities, the annual production is similar, but the species are different. The total annual production (air-dry weight) of this state is about 275 pounds per acre, but it can range from about 200 lbs./acre in unfavorable years to about 425 lbs./acre in above average years. The following is the growth curve of this plant community expected during a normal year: Growth curve number: WY0501 Growth curve name: 5-9BH, UPLAND SITES Growth curve description: ALL UPLAND SITES | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 10 | 50 | 25 | 5 | 0 | 10 | 0 | 0 | 0 | (Monthly percentages of total annual growth) This plant community is mostly resistant to change, but species composition can be altered through long-term overgrazing. The herbaceous component is stable and plant vigor and replacement capabilities are sufficient. The biotic community is not intact because of the predominant salt tolerant shrub overstory and the lack of cool-season mid grasses. Plant diversity is moderate Soils are mostly stable and recent soil loss is minimal. The remnant evidence of erosion should not be confused with current erosion processes. Water flow patterns and litter movement is stable but is still occurring on steeper slopes. Incidence of pedestalling is improving. The watershed may or may not be functioning Transitions or pathways leading to other plant communities are as follows: - <u>Frequent and severe grazing</u> will convert the plant community to the *Salt Tolerant Shrub/Bare Ground Plant Community*. - Recovery to near Historic Climax Plant Community condition is difficult to impossible due to the resistance of these shrubs to herbicides and other brush management techniques. In addition, the increase in surface salts has had accumulated effects on the soil so most of the herbaceous plants associated with the HCPC are no longer suitable for this site. The most notable exception is the rhizomatous wheatgrasses and bottlebrush squirreltail. Soil remediation to reduce the surface salts is not recommended, as this is mostly ineffective and extremely costly. Seeding more salt-tolerant grasses and forbs will improve the productivity of site and plant cover, but will not improve the biotic integrity. ## **Ecological Site Interpretations** ## **Animal Community – Wildlife Interpretations** Rhizomatous Wheatgrasses/Bottlebrush Squirreltail (HCPC): The predominance of grasses in this plant community favors grazers and mixed-feeders, such as bison, elk, and antelope. Suitable thermal and escape cover for deer may be limited due to the low quantities of woody plants. However, topographical variations could provide some escape cover. When found adjacent to sagebrush dominated states, this plant community may provide brood rearing/foraging areas for sage grouse, as well as lek sites. Other birds that would frequent this plant community include Western meadowlarks, horned larks, and golden eagles. Many grassland obligate small mammals would occur here. **Perennial Grass/Mixed Shrub Plant Community**: The combination of an overstory of sagebrush and an understory of grasses and forbs provides a very diverse plant community for wildlife. The crowns of sagebrush tend to break up hard crusted snow on winter ranges, so mule deer and antelope may use this state for foraging and cover year-round, as would cottontail and jack rabbits. It provides important winter, nesting, brood-rearing, and foraging habitat for sage grouse. Brewer's sparrows nest in big sagebrush plants, and a host of other nesting birds utilize stands in the 20-30% cover range. **Mixed Shrub/Bare Ground Plant Community:** This plant community can provide important winter foraging for elk, mule deer and antelope, as sagebrush can approach 15% protein and 40-60% digestibility during that time. This community provides excellent escape and thermal cover for large ungulates, as well as nesting habitat for upland game birds. However, it provides little foraging opportunities for upland game birds, as fewer forbs are available. Many grassland obligate small mammals would occur here. **Blue Grama Sod Plant Community:** These communities provide limited foraging for antelope and other grazers. They may be used as a foraging site by sage grouse if proximal to woody cover and if the Historic Climax Plant Community or the Big Sagebrush/Perennial Grass Plant Community is limited. Generally, these are not target plant communities for wildlife habitat management. **Salt Tolerant Shrub/Bare Ground Plant Community:** This plant community exhibits a low level of plant species diversity due to the accumulation of salts near the soil surface. It does, however, provide thermal and escape cover for large animals and upland birds. Upland game birds may find little foraging opportunities, as fewer forbs are available. Many grassland obligate small mammals would occur here. **Salt Tolerant Shrub/Rhizomatous Wheatgrass Plant Community:** This plant community can provide winter foraging for elk, mule deer and antelope. This community provides escape and thermal cover for large ungulates, as well as nesting habitat for upland game birds. However, it provides little foraging opportunities for upland game birds, as fewer forbs are available. Many grassland obligate small mammals would occur here. | COMMON NAME/ | COLEME | SCIENTIFIC | 0 | 01- | | | A-4.: | |--------------------------------------------------|-------------------------------------------|----------------|--------|--------------|--------------|-----------------------------------------|----------| | GROUP NAME GRASSES/GRASSLIKES | SCIENTIFIC NAME | SYMBOL | Cattle | Sheep | Horses | Deer | Antelope | | Alkali bluegrass | Poa juncifolia (syn. P. secunda) | POJU (POSE) | DDDD | PPPP | DDDD | PPPP | PPPP | | Alkali cordgrass | Spartina gracilis | SPGR | DDDD | UUUU | DDDD | UUUU | UUUU | | Alkali sacaton | Sporobolus airoides | SPAI | PPPP | DDDD | PPPP | DDDD | DDDD | | Baltic rush | Juncus balticus | JUBA | DDDD | UUUU | DDDD | UUUU | UUUU | | Basin wildrye | Leymus cinereus | LECI4 | PPPP | PPPP | PPPP | DDDD | DDDD | | Beaked sedge | Carex rostrata | CARO6 | DDDD | UUUU | DDDD | UUUU | UUUU | | Blue grama | Bouteloua gracilis | BOGR2 | DDDD | DDDD | DDDD | DDDD | DDDD | | Bluebunch wheatgrass | Pseudoroegneria spicata | PSSP6 | PPPP | PPPP | PPPP | DDDD | DDDD | | Bottlebrush squirreltail | Elymus elymoides | ELEL5 | DDDD | DDDD | DDDD | UUUU | DDDD | | Canada wildrye | Elymus canadensis | ELCA4 | PPPP | PPPP | PPPP | DDDD | DDDD | | Golden sedge | Carex aurea | CAAU3
ACHY | DDDD | DDDD
PPPP | DDDD | UUUU | UUUU | | Indian ricegrass Inland saltgrass | Achnatherum hymenoides Distichlis spicata | DISP | PPPP | UUUU | PPPP
UUUU | PPPP
UUUU | PPPP | | Inland satigrass Inland sedge | Carex interior | CAIN11 | DDDD | DDDD | DDDD | UUUU | UUUU | | Nebraska sedge | Carex nebrascensis | CANE2 | PPPP | PPPP | PPPP | DDDD | DDDD | | Needleandthread | Hesperostipa comata | HECO26 | PPPP | PPPP | PPPP | PPPP | PPPP | | Nuttall's alkaligrass | Puccinellia nuttalliana | PUNU2 | PPPP | PPPP | PPPP | PPPP | PPPP | | Prairie junegrass | Koeleria macrantha | KOMA | DDDD | DDDD | DDDD | DDDD | DDDD | | Prairie sandreed | Calamovilfa longifolia | CALO | PPPP | UUUU | PPPP | UUUU | UUUU | | Red threeawn | Aristida purpurea | ARPUL | UUUU | UUUU | UUUU | UUUU | UUUU | | Sand dropseed | Sporobolus cryptandrus | SPCR | DDDD | DDDD | DDDD | UUUU | UUUU | | Sandberg bluegrass | Poa secunda | POSE | DDDD | DDDD | DDDD | DDDD | DDDD | | Slender wheatgrass | Elymus trachycaulus | ELTR7 | PPPP | DDDD | PPPP | DDDD | DDDD | | Streambank wheatgrass | Elymus lanceolatus | ELLA3 | DDDD | DDDD | DDDD | DDDD | DDDD | | Thickspike wheatgrass | Elymus lanceolatus ssp. lanceolatus | ELLAL | DDDD | DDDD | DDDD | DDDD | DDDD | | Threadleaf sedge | Carex filifolia | CAFI | DDDD | DDDD | DDDD | DDDD | DDDD | | Threeawns | Aristida spp. | ARIST | UUUU | UUUU | UUUU | UUUU | UUUU | | Tufted hairgrass | Deschampsia caespitosa | DECA18 | PPPP | PPPP | PPPP | DDDD | DDDD | | Upland sedge | Carex aquatilis | CAREX | DDDD | DDDD | DDDD
DDDD | DDDD | DDDD | | Water sedge | Carex aquatilis | PASM | DDDD | DDDD | DDDD | DDDD | DDDD | | Western wheatgrass FORBS | Pascopyrum smithii | PASIVI | טטטט | טטטט | טטטט | טטטט | טטטט | | Alkali seepweed | Suaeda spp. | AGOSE | UUUU | UUUU | UUUU | UUUU | UUUU | | Arrowgrass | Triglochin spp. | TRIGL | TTTT | TTTT | TTTT | TTTT | TTTT | | Asters | Eucephalus spp. | EUCEP2 | UUUU | UUUU | υυυυ | UUUU | UUUU | | Biscuitroot | Lomatium spp. | LOMAT | DDDD | DDDD | UUUU | DDDD | DDDD | | Blue-eyed grass | Sisyrinchium spp. | SISYR | UUUU | UUUU | UUUU | UUUU | UUUU | | Buckwheats | Eripgonum spp. | ERIOG | UUUU | DDDD | UUUU | UUUU | UUUU | | Dock | Rumex spp. | RUMEX | UUUU | UUUU | UUUU | UUUU | UUUU | | Evening primrose | Oenothera caespitosa | OECA10 | UUUU | UUUU | UUUU | UUUU | UUUU | | False carrot | Turgenia spp. | TURGE | UUUU | DDDD | UUUU | UUUU | UUUU | | Fleabanes | Erigeron spp. | ERIGE2 | DDDD | DDDD | DDDD | DDDD | DDDD | | Horsetails | Equisetum spp. | EQUIS | UUUU | UUUU | TTTT | UUUU | UUUU | | Iris | Iris spp. | IRIS | UUUU | UUUU | UUUU | UUUU | UUUU | | Larkspur (poisonous in spring before flowering) | Delphinium spp. | DELPH | DDDD | DDDD | DDDD | DDDD | DDDD | | Milkvetch | Astragalus spp. | ASTRA | DDDD | DDDD | DDDD | DDDD | DDDD | | Nailwort | Paronychia spp. | PARON | UUUU | UUUU | UUUU | UUUU | UUUU | | Paintbrush | Castilleja spp. | CAST | DDDD | DDDD | DDDD | DDDD | DDDD | | Penstemons | Penstemon spp. | PENST | PPPP | PPPP | PPPP | PPPP | PPPP | | Phlox | Phlox spp. | PHLOX | UUUU | UUUU | UUUU | UUUU | UUUU | | Princesplume Pussytoes | Stanleya spp. | STANL | UUUU | UUUU | UUUU | UUUU | UUUU | | Salsify | Antennaria spp. Tragopogon porrifolius | TRPO | UUUU | UUUU | UUUU | UUUU | UUUU | | Scarlet globemallow | Sphaeralcea coccinea | SPCO | DDDD | DDDD | DDDD | DDDD | DDDD | | Stemless hymenoxys | Tetraneuris acaulis | TEACA2 | UUUU | UUUU | UUUU | UUUU | UUUU | | Stonecrop | Sedum spp. | SEDUM | UUUU | UUUU | UUUU | UUUU | UUUU | | Toadflax | Comandra umbellata | COUMP | UUUU | UUUU | UUUU | UUUU | UUUU | | Wild onion | Allium textile | ALTE | DDDD | DDDD | DDDD | DDDD | DDDD | | Woody aster | Xylorhiza spp. | XYLOR | TTTT | TTTT | TTTT | TTTT | TTTT | | TREES, SHRUBS & HALF-SHRUBS | | | | | | | | | Big sagebrush | Artemisia tridentata | ARTR2 | DDDD | DDDD | UUUU | DDDD | DDDD | | Birdfoot sagebrush | Artemisia pedatifida | ARPE6 | UUUU | UUUU | UUUU | UUUU | UUUU | | Black sagebrush | Artemesia nova | ARNO4 | UUUU | PPPP | UUUU | PPPP | PPPP | | Bud sagebrush | Picrothamnus desertorum | PIDE4 | PPPP | PPPP | DDDD | PPPP | PPPP | | Cottonwoods (sprouts) | Populus spp. | POPUL | PPPP | PPPP | PPPP | PPPP | UUUU | | Fourwing saltbush | Atriplex canescens | ATCA2 | PPPP | PPPP | PPPP | PPPP | PPPP | | Gardners saltbush | Atriplex gardneri | ATGA | PPPP | PPPP | DDDD | PPPP | PPPP | | Greasewood (toxic in large amounts) | Sarcobatus vermiculatus | SAVE4 | DDDD | DDDD | UUUU | DDDD | DDDD | | Junipers
Croop rabbithrush | Juniperus scopulorum | JUSC2 | UUUU | UUUU | UUUU | DDDD | UUUU | | Green rabbitbrush | Chrysothamnus viscidiflorus | CHVI8 | DDDD | DDDD | UUUU | PPPP | PPPP | | Rubber rabbitbrush | Ericameria nauseosa | ERNA10 | UUUU | PPPP | UUUU | DDDD | PPPP | | Shadscale
Silver buffeleberg | Atriplex confertifolia | ATCO | UUUU | UUUU | UUUU | UUUU | UUUU | | Silver buffaloberry Silver sagebrush | Shepherdia argentea Artemisia cana | SHAR
ARCA13 | DDDD | DDDD | DDDD | PPPP | PPPP | | Silver sagebrush
Skunkbush sumac | Rhus trilobata | RHTR | DDDD | DDDD | UUUU | DDDD | DDDD | | Spiny hopsage | Grayia spinosa | GRSP | UUUU | UUUU | UUUU | UUUU | UUUU | | Spiny nopsage
Wildrose | Rosa woodsii var. woodsii | ROWOW | DDDD | DDDD | UUUU | DDDD | DDDD | | Willows | Salix spp. | SALIX | PPPP | PPPP | DDDD | PPPP | UUUU | | Winterfat | Krascheninnikovia lanata | KRAL2 | PPPP | PPPP | PPPP | PPPP | PPPP | | Yucca | Yucca spp. | YUCCA | DDDD | DDDD | UUUU | DDDD | DDDD | | N = not used: II = undesirable: D = desirable: P | | 1 | 2220 | | 2000 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , ,,,,,, | N = not used; U = undesirable; D = desirable; P = preferred; T = toxic ## **Animal Community – Grazing Interpretations** The following table lists suggested stocking rates for cattle under continuous season-long grazing under normal growing conditions. These are conservative estimates that should be used only as guidelines in the initial stages of the conservation planning process. Often, the current plant composition does not entirely match any particular plant community (as described in this ecological site description). Because of this, a field visit is recommended, in all cases, to document plant composition and production. More precise carrying capacity estimates should eventually be calculated using this information along with animal preference data, particularly when grazers other than cattle are involved. Under more intensive grazing management, improved harvest efficiencies can result in an increased carrying capacity. If distribution problems occur, stocking rates must be reduced to maintain plant health and vigor. | Plant Community | Production (lb./ac) | Carrying Capacity*
(AUM/ac) | |--|---------------------|--------------------------------| | Historic Climax Plant Community | 200-500 | .20 | | Perennial Grasses/Mixed Shrub | 150-400 | .16 | | Mixed Shrub/Bare Ground | 75-325 | .10 | | Blue Grama Sod | 50-150 | .05 | | Salt Tolerant Shrub/Bare Ground | 75-275 | .07 | | Salt Tolerant Shrub/Rhizomatous Wheatgrasses | 200-425 | .16 | ^{* -} Continuous, season-long grazing by cattle under average growing conditions. Grazing by domestic livestock is one of the major income-producing industries in the area. Rangeland in this area may provide yearlong forage for cattle, sheep, or horses. During the dormant period, the forage for livestock use needs to be supplemented with protein because the quality does not meet minimum livestock requirements. ## **Hydrology Functions** Water is the principal factor limiting forage production on this site. This site is dominated by soils in hydrologic group C, with localized areas in hydrologic group D. Infiltration ranges from slow to moderately slow. Runoff potential for this site varies from moderate to high depending on soil hydrologic group and ground cover. In many cases, areas with greater than 75% ground cover have the greatest potential for high infiltration and lower runoff. An example of an exception would be where short-grasses form a strong sod and dominate the site. Areas where ground cover is less than 50% have the greatest potential to have reduced infiltration and higher runoff (refer to Part 630, NRCS National Engineering Handbook for detailed hydrologic information). Rills and gullies should not typically be present. Water flow patterns should be barely distinguishable if at all present. Pedestals are only slightly present in association with bunchgrasses. Litter typically falls in place, and signs of movement are not common. Chemical and physical crusts are rare to non-existent. Cryptogamic crusts are present, but only cover 1-2% of the soil surface. #### **Recreational Uses** This site provides hunting opportunities for upland game species. The wide variety of plants which bloom from spring until fall have an esthetic value that appeals to visitors. #### **Wood Products** No appreciable wood products are present on the site. #### **Other Products** None noted. ## **Supporting Information** #### **Associated Sites** | Shallow Clayey | 032XY158WY | |----------------|------------| | Sandy | 032XY150WY | | Loamy | 032XY122WY | | Saline Upland | 032XY144WY | | Saline Lowland | 032XY138WY | #### **Similar Sites** () – Clayey 10-14" Foothills and Basin East P.Z., R032XY304WY has higher production. ## **Inventory Data References (narrative)** Information presented here has been derived from NRCS inventory data. Field observations from range trained personnel were also used. Other sources used as references include: USDA NRCS Water and Climate Center, USDA NRCS National Range and Pasture Handbook, and USDA NRCS Soil Surveys from various counties. ## **Inventory Data References** | Data Source | Number of Records | Sample Period | <u>State</u> | <u>County</u> | |---------------|-------------------|---------------|--------------|---------------| | SCS-RANGE-417 | 19 | 1965-1986 | WY | Park & others | ## **State Correlation** This site occurs entirely within Wyoming. ## **Type Locality** #### Field Offices Cody, Greybull, Lovell, Powell, Thermopolis, Worland ## **Relationship to Other Established Classifications** ### **Other References** ## **Site Description Approval** | State Range Management Specialist |
Date | |-----------------------------------|----------|